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Abstract—Cloud computing is an innovative service platform to offer diverse resources such as infrastructure, platform and 

software as services. However, one challenging aspect of such a service is the impatient user threat, which directly leads to 

numerous negative impacts such as poor throughput, unpredictable workload variation and resources wasted. In this paper, the 

problems of conducting system controls in a cost-effective way and simultaneously satisfying performance guarantees are first 

studied. System losses are analyzed according to the related performance factors and waiting buffer sizes. A cost model is 

developed to address a performances/cost tradeoff issue in which the user balking, reneging, system blocking and resources 

provisioning are all taken into account. The relationship between system controls and throughput variations in a multi-servers 

system with a finite buffer is demonstrated. A proposed policy combined with a heuristic algorithm allows cloud providers to 

control the service rate and buffer size within a system loss guarantee by solving constrained optimization problems. Simulation 

results show that more cost-saving and system throughput enhancement can be verified as compared to a system without 

applying our policy.  

Index Terms— Cost optimality, loss probability, system blocking, throughput rate  

——————————      —————————— 
 

1 INTRODUCTION

LOUD computing is an emerging service paradigm     
to eliminate the burden of complex infrastructure 

management for companies/users. This service paradigm 
is developed as a utility computing to offer the pool of 
computing resources in a pay-as-you-go manner rather 
than traditional “own-and-use” patterns [1], [2]. Cloud 
providers supply service resources based on several fun-
damental models, including infrastructure as a service 
(IaaS), platform as a service (PaaS), and software as a ser-
vice (SaaS). For example, Amazon Elastic Compute Cloud 
(EC2), Amazon S3, Google’s App Engine, Salesforce, etc. 
are all existing business models to provide computing 
infrastructure, data-storage, programming platforms, and 
software applications as services, respectively. 

Cloud resources for providing on-demand or reserved 
instances can be leased through a network for temporary 
or long-term project needs. However, it is difficult to 
avoid either over-provisioning or under-provisioning 
when workloads have unpredictable/seasonal changes.     
Generally, resource over-provisioning helps to maintain 
quality of service (QoS), provide scalable resources, and 

avoid poor performances. Nevertheless, this approach 
will lead to many shortcomings as follows. First, it is dif-
ficult for a cloud provider to determine the best peak load 
provisioning. Second, huge energy consumption and re-
sources provisioning cost are required; Third, most re-
sources suffer from under-utilization for some days or 
months during off-seasons. Conversely, resource under-
provisioning can conserve operational costs. However, 
performance degradations such as long waiting time, 
queuing length, high system loss, etc. are difficult to 
avoid.  

Some impatient users may abandon this services sys-
tem immediately after experiencing intolerable latency. 
Furthermore, “Impatient users” [3], [4] that are commonly 
found in network services will inevitably occur in a cloud 
environment for making use of application software [5], 
[6]. A cloud service system with impatient users/jobs has 
attracted some research attentions from balancing elec-
tricity bill [7], impatient task mapping [8] to pricing mod-
el [9]. Here, we focus on the “balking” and “reneging” in 
a queuing system, as shown in Fig. 1 (a) and Fig. 1 (b), 
respectively. The balking means that users refuse to join 
the queue due to long queuing length. Unlike the balking, 
users who choose not to wait in a queue after facing la-
tency would be accused of reneging.   

To avoid poor throughput, performance levels 

should be negotiated according to user’s expectations and 

system’s abilities in advance. To reach a consensus on 

service contents, signing a service level agreement (SLA) 

is an essential process by all interested parties [10]. The 
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SLA outlines all aspects of cloud service usages and obli-

gations, such as Quality of Service (QoS) guarantees, bill-

ing, etc. Therefore, a penalty or compensation is required 

to pay when any party violates a SLA contract. In short, 

conducting an accurate performance analysis is required 

to satisfy performances guarantees in service-oriented 

systems.  
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Fig. 1 Systems with (a) Balking (b) Reneging. 
 

In this paper, we discuss the problems: (i) what is the 

system control effect on operational costs and perfor-

mances when facing unpredictable request arrival rates? 

(ii) How to evaluate the relationship between user balk-

ing/reneging and system blocking on final throughput 

rates? (iii) How to address the optimal resource provi-

sioning to achieve the cost optimality within a perfor-

mance guarantee? 
The optimal resource provisioning problem that we 

previously dealt with in [11] for profit optimization is 
further extended by taking into account the service rate 
control and user reneging impact. The main contributions 
of this paper can be summarized as follows:  

 The challenge issues of arrival rate variations 

and resources wasted for a finite buffer queue 

with impatient users are studied by taking into 

account some related performance factors and 

the possible losses in a service system.  

 A cost-effective policy combined with a heuristic 

algorithm is first proposed to address con-

strained optimization problems. The relation-

ship between important performance indicators 

and operational costs can be determined in our 

designed service model.  

 Simulations are conducted by considering dif-

ferent threats of potential balking and reneging 

factors. Experiment results show that more cost-

saving and system throughput enhancement can 

be verified as compared to a system without ap-

plying our policy.   

The remainder of this paper is structured as follows: 

Section 2 gives a brief overview related to finite-buffer 
queues, impatient users, cost-effectiveness analyses and 
latency information. Section 3 describes a multi-servers 
queuing system with a finite buffer and impatient users. 
Probabilities of related system loss are calculated. In Sec-
tion 4, a cost model is developed and the Cost-Effective 
policy in an Abandoned system (CEA policy) is presented 
to solve constrained optimization problems. Simulations 
and comparison of results are shown in Section 5. The 
whole work and future research are concluded in Section 
6.   

2 RELATED WORK 

2.1 Queuing Systems with Impatient Users 

Researches in diverse systems with impatient users have 

been a long history; a review of related works is provided 

as follows. In [12], the performance of a telephone system 

with patient and impatient users were both studied. Ex-

pressions of performance measures, including the aver-

age number of patient customers or impatient customers 

in the system, etc. could be expressed in terms of the joint 

probabilities. The waiting time probabilities, the average 

waiting time of a customer in a buffer, and the probability 

that a customer would be served as a patient customer 

were also obtained.  

In [13], Mandelbaum and Zeltyn were motivated by a 

phenomenon that had been observed in a telephone call 

data center: a clear linear relation between an abandoned 

probability and an average waiting time. The issues that 

arose in the introduction would be explored within the 

framework of the M/M/n+G queuing system. System per-

formances for a variety of patience distributions were 

explored over different arrival rates. Under the assump-

tion that the arrival rate converged to zero, they comput-

ed the asymptotic ratio between the probabilities of aban-

doning.  

An analytic cost model for M/G/1/N queuing systems 

was presented in [14]. Doran, Lipsky and Thompson ex-

plored the interplay of queue size, customer loss, and 

mean service time for various service time distributions. 

It considered the cost of customer loss versus customer 

delays by varying buffer size and processor speed. In [15], 

Ghosh and Weerasinghe addressed a rate control problem 

associated with a single server. An infinite horizon cost 

minimization problem was considered. They obtained an 

explicit optimal strategy for the limiting diffusion control 

problem (the Brownian control problem or BCP) which 

consisted of a threshold-type optimal rejection process 

and a feedback-type optimal drift control. This solution 

was then used to construct an asymptotically optimal 

control policy.  

A service system with impatient customer was an im-

portant research issue in cloud resources provisioning, 

but little mentioned in previous works. In [5], Mehdi et al. 
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evaluated the proposed model impact on impatient jobs. 

The proposed algorithm mapped the jobs with inspiration 

by using Minimum Completion Time scheduling algo-

rithm (MCT). However, this work only presented an algo-

rithm to evaluate the impact of the proposed model on 

impatient jobs. Rigorous analyses in performances factors 

were ignored.    

 
2.2 Cloud Systems with Finite Buffers and Delay 

Information  

Cloud computing has attracted considerable research at-

tention, but only a few works done so far have addressed 

finite capacity models. In [16], a cloud center was model 

as an M/M/m/m queuing system to conduct a preliminary 

study of the fault recovery impact on a cloud service per-

formance. When a user submitted a service request to the 

cloud, the request would first arrive at the cloud man-

agement system (CMS) which maintained a request 

queue. If the queue was not full, the request would enter 

the queue; otherwise it would be dropped and the re-

quested service failed. Cloud service performance was 

quantified by a service response time, whose probability 

density function was derived.   

In [17], Khazaei, Misic and Misic described a novel 

approximate analytical model for performance evaluation 

of cloud server farms and solved it to obtain estimation of 

the complete probability distribution of request response 

time and other important performance indicators. They 

also pointed out that accommodated heterogeneous ser-

vices in a cloud center might impose longer waiting time 

for its clients than a homogeneous equivalent. However, 

no buffer size control or no impatient behavior was dis-

cussed or mentioned in their work.  
On the other hand, for the purpose of enhancing ser-

vice quality, information about delays was provided to 
users in cloud systems. In [18], Cappos et al. showed the 
Seattle program measures network latency to a list of IP 
addresses and displayed a webpage for showing the la-
tency to each node. For modeling global cloud resources, 
a Voronoi Diagrams device was combined with near-real-
time network latency information in [19]. Shouraboura 
and Bleher presented a novel Virtual Cloud Model (VCM) 
supplemented with near-real-time network latency in-
formation.   

Instances would communicate state information with 

each other in order to keep the “world” consistent in ap-

pearance to all participants. VCM could also be used to 

share application placement information across different 

Clouds. In [20], Lim et al. proposed a Cloud Resource 

Estimation Module based on service latency information. 

A highly accurate service latency prediction mechanism 

was derived. Their designed system could provide a 

framework which facilitated service latency information 

collection for better cloud service management. It aimed 

to use service latency information to provide fast re-

sponse for various delay-sensitive cloud services.  

2.3 Cost Effective Analyses for Cloud Computing 

In additional, some existing researches focus on the issue 

of cost-benefit analysis in cloud computing. In [21], Selva-

rani and Sadhasivam discussed a job grouping algorithm 

which was used to allocate the task-groups to different 

available resources. This scheduling algorithm measured 

both resource cost and computation performance, it also 

improved the computation/communication ratio by 

grouping the user tasks according to a particular cloud 

resource’s processing capability and sent the grouped 

jobs to the resource.   

A cost-based resource scheduling paradigm was pre-

sented in [22] by leveraging market theory to schedule 

compute resources and meet user’s requirement. The set 

of computing resources with the lowest price were as-

signed to the user according to current suppliers’ resource 

availability and price. An algorithm and protocol were 

designed for cost-based cloud resource scheduling. The 

scheduling algorithm and protocol were described in the 

pure Java based platform, which had three-tiered hierar-

chical and extensible architecture. 

 In [23], a minimum cost maximum flow algorithm 

was proposed for resources (e.g. virtual machines) 

placement in clouds. Hadji and Zeghlache focused on the 

optimal dynamic placement of virtual resources in data 

centers and cloud infrastructures to serve multiple users 

and tenants with time varying demands and workloads. 

Providers could use the minimum cost maximum flow 

algorithm to opportunistically select the most appropriate 

physical resources.  

In [24], Hwang et al. presented a two-phase algo-

rithm for service operators to minimize their service pro-

vision cost. In the first phase, a mathematical formula was 

proposed to compute the optimal amount of long-term 

reserved resources.  In the second phase, the Kalman fil-

ter was used to predict resource demand and adaptively 

change the subscribed on-demand resources such that 

provision cost could be minimized. They exploited a pre-

dictive-based resource management to adaptively config-

ure VMs. To the best of our knowledge, the problems of 

achieving a cost-effective cloud system with finite buffer 

analyses and impatient job concerns have not been stud-

ied. 

3 MODEL DESCRIPTION 

3.1 A Multi-Servers System with Blocking Control  

 We consider a cloud server farm with a finite buffer 

and model it as an M/M/R/K queuing system. The 

mathematical expressions are stated in detail as follows. 
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There have R identical servers and at most K user re-

quests are allowed in the system. User requests arrive 

from an infinite source with a mean arrival rate  and 

follow a Poisson distribution [25], while service times 

have an exponential distribution with parameter μ.  

The first-come-first-served (FCFS) queuing discipline 

is adopted and let the states n (n= 0, 1, 2,..., K) represent 

the number of user requests in the system. The value of 

the request arrival rate and the service rate are taken to be  

,    0 1,  ,         1    1,
                  (1)

0,                  , ,                ,
n n

n K n n R

n K R R n K

 
 



      
  

     

The probability of n user requests that are being served in 

the system is denoted by Pn. In a steady state, the proba-

bility functions Pn can be obtained from the birth-and-

death formula. According to the value n may happen, two 

segments are defined by the vector: [Segment 1, Segment 

2] = [1 ≤ n ≤ R–1, R ≤ n ≤ K]. With expressions in Eq. (1), 

the initial state probability functions Pn can be derived as 

follows:  
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To obtain Po, Eq. (2) and Eq. (3) are brought into the nor-
malizing equation:
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, and the steady-state probability of zero service Po can be 
obtained as follows:   
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System utilization is equal to ρ=λ/Rμ, the steady-state 

solution always exists for all positive value of λ and µ , 

but when λ > Rµ , the number of user requests will be re-

stricted within K in the system since there has no buffer 

(waiting space).  

3.2 A Finite Buffer Queue with Impatient Users  

There are various balking and reneging rules dis-

cussed in previous works. The queuing length and wait-

ing time are usually the main factors to affect user balking 

and reneging behaviors, respectively. As illustrated in 

Fig. 2 (a), the system blocking loss (denoted by K) can be 

reduced by expanding the buffer size. However, a larger 

waiting buffer will lead to a long queue and waiting time 

during peak load, which directly result in a higher balk-

ing rate (denoted by B) and reneging rate (denoted by R), 

respectively. On the contrary, balking and reneging rates 

can be lessened by reducing the buffer size; however, it 

will lead to more system blocking loss, as depicted in Fig. 

2 (b).  
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                                              (b) 

Fig. 2 (a) The effect of expanding the buffer size (b) The 
effect of reducing the buffer size on system losses. 

Since a user whose job request is blocked will simply 

be dropped, a cloud provider should keep system losses 

as low as possible to satisfy performance guarantees. Fig. 

3 shows the proposed cloud service model which is com-

prised of R servers with a finite buffer size, denoted by β. 

Dynamic system controls are used to alleviate system 

losses and deal with a widely varying load. Due to the 

fact that a system loss at a front stage directly affects sub-

sequent performances, the request arrival rate at the mid-

dle node (MN) queue and the final system throughput are 

evaluated by taking into account resources provisioning, 

related performance factors and potential user behaviors 

in the following. 

3.3 Balking Probability 

For the purpose of delivering quality service [26], [27], the 

delay information about the predicted queuing length is 

sent to inform each arrival user [28]. By using Eq. (5), the 

expected queuing length Lq can be obtained as:   
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Fig. 3 A cloud service model with a finite buffer and impatient users 

Few arrival users may decide not to join the queue 

and leave the system when the queuing length is too long 

to be accepted. The severity of balking and reneging rates 

at the end of per planning period will be recorded in this 

system. The corresponding notations used in this paper 

are listed in Table 1.  

TABLE 1 

List of Key Notations 

Notation Description 
Ub Potential balking factor according to 

historical data.  
Ur  Potential reneging factor according to 

historical data. 
Pb, Potential balking probability of which 

would be expressed as a function of Ub 

and Lq. 
Pr  Potential reneging probability of which 

would be expressed as a function of Ur  

and Wq.  
PK Blocking probability when the system 

capacity is K. 
λb Mean balking rate.    

λr  Mean reneging rate.  

λK System blocking rate when the system 
capacity is K.     

λM Arrival rate at the middle node (MN) 
depended on λb and λr. 

λF Final throughput rate. 

PL System loss probability. 

By taking 
b  divided by the mean queuing length and 

initial arrival rate, the potential balking factor, denoted by 

Ub can be obtained as follow:    

.                                (7)b
b

q

U
L








 

The balking probability can be calculated by multiplying 
the mean queuing length and its potential balking factor 
together as below: 

.                                        (8)b q bP L U   

Based on the same service type at a subsequent period [29] 

with an arrival rate λ, the mean balking rate can be ob-

tained as follow.  

                                              (9)b bP   

3.4 System Blocking Probability 

The blocking probability means that user requests cannot 

be retained in the queue due to lack of waiting-space 

when all servers are busy. That is, user requests are al-

lowed to enter and obtain service if the buffer hasn’t been 

completely occupied. The subsequent request arrival rate 

is (λ ‒ λb) after excluding the balking loss. Since the con-

trolled system capacity in the proposed system is K, the 

blocking probability can be calculated by using Eq. (5) as 

below: 

( )
 .                                   (10)

! 

K

b
K oK R K

P P
R R

 






   

Then the system blocking rate, denoted by λK can be ob-

tained as follow.  

b( ) .                                     (11)K KP    
 

According to the user balking rate and the system block-

ing rate, the request arrival rate at the MN queue, denot-

ed by λM can be given as follow.       

b .                                (12)M K     
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3.5 Reneging probability  
 

Based on the rate of λM, the system performances at the 
MN queue, denoted by P0*, Pn* and the mean queuing 
length Lq* can be calculated by using Eq.(1)–Eq. (5) .     

* * * 1
* 0

* *

( / ) 1
 ( ).        (13)
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M
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P d
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R d
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To find the predicted waiting time Wq* at the MN 
queue, the well-known Little’s law is applied [25]. It states 
that the average number of items waiting to receive ser-
vice is equal to the average arrival rate multiplied by the 
mean time. Historically, it has been written as 
 
                                          L=λW                                            (14)     
Then, the waiting time at the MN queue can be obtained 
as  

                

*

* .                                          (15)
q

q

M

L
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 Dividing the mean recorded reneging rate 
r  

by the 

mean waiting time and the arrival rate at the MN queue, 

the potential reneging factor can be obtained as follow.  

*
.                                           (16)r

r

q M

U
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Similarly, the reneging probability can be calculated by 
multiplying the mean waiting time and the potential re-
neging factor together as below: 

*                                         (17)r q rP W U   

Then, the expected reneging rate in the queue can be ob-

tained as follow:   

                                            (18)r rM P    

For the system with finite waiting buffer and impa-
tient users, the final throughput rate, denoted by λF, is 
calculated as below: 

.                                 (19)F b K r         

After excluding all system losses, the final system utiliza-

tion can be obtained as follow: 

.                                     (20)M r
F

R

 







 

Hence, the system loss probability can be estimated as: 
 

 

4. Cost analyses and the CEA policy 

4.1 A Cost Model 

In a cloud system, the major operational costs of re-

sources provisioning (incurred by server quantity, power 

consumption and buffer capacity), system losses (in-

curred by impatient users, system blocking and activating 

VMs) and performances (incurred by system rejection 

penalty and system congestion) are all taken into account, 

as shown in Fig. 4.   
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Fig. 4 The major operational costs in a cloud system. 

 In general, virtual machines (VMs) will be activated 
when a job request has been accepted and forwarded into 
the buffer. However, some impatient users will renege 
after entering the queue and abandon the VMs immedi-
ately. Therefore, the specific problem of cost overhead for 
activating VMs but without releasing them is required to 
be evaluated for a system with impatient users. The de-
scriptions of cost notations are summarized as follows. 
C1≡ Expected server provisioning cost per server per unit 

time; 

C2≡ Expected power consumption cost per service rate per 
unit time; 

C3≡ Expected cost incurred by preparing per buffer space 
per unit time; 

C4≡ Impatient users and system blocking losses incurred 
by per request;   

C5≡ Starting-up cost incurred by activating per VM;  
C6≡ System rejection penalty; 
C7≡ Cost incurred by holding jobs in the system per unit 

time; 
C8≡ Cost incurred by jobs waiting in the system per unit 

time; 
Since system performances, loss probability and oper-

ational costs strongly depend on the buffer space and the 
service rate, an expected cost function per unit time is 
developed in which both the service rate and the buffer 
size are the main decision variables. Apparently, no users 
want to be blocked or abandon service due to inadequate 
buffer space or intolerable system delay, respectively. 
Hence, there should has a loss probability guarantee in a 
service system, which is also perceived as one of the most 
important performance concerns to measure service levels 
[30]. Here, the SLA constraint is specified by guarantee-
ing: loss probability ≤ x%, where x is the maximum 
threshold value, denoted by SLA (x%). The cost minimi-
zation (CM) with a loss probability guarantee can be rep-

.                                    (21)F
LP
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resented mathematically as      
Minimize    CM       

      Subject to 

                     0 ≤ PL < x 

Where   CM = F (μ, β)       

= (RC1+μC2) /ρF +βC3+ (λr+λb+λK)C4+λrC5 +PK C6 

                            + LqC7+Wq* C8                                                                                        (22) 
 

4.2 The Proposed CEA Policy  

Here, the designed Cost-Effective policy in an Abandoned 

system (CEA policy) is presented to address the optimal 

solution of (μ, β), say (μ*, β*), so as to minimize the opera-

tional cost without violating a SLA constraint. It focuses 

on solving the contradictory problem among reducing 

system losses and conserving operational cost. However, 

it is extremely difficult to obtain the analytical result of 

the optimal solution due to the fact that the cost function 

is highly nonlinear and complex. Instead, we present the 

CEA heuristic algorithm to find the minimum total cost 

by solving nonlinear constrained optimization problems 

under various incurred costs and user behavior varia-

tions.  

CAE heuristic algorithm 

 Input Data:  
1. Arrival rate λ. 
2. Potential balking and reneging factors [Ub, Ur]. 
3. Cost matrix [C1, C2, C3, C4, C5, C6, C7, C8].    
4. The number of servers R. 
5. The upper bound of service rate and buffer size in the 

cloud server farm, denoted by μp and βd. 
6. The loss probability guarantees x in the SLA constraint.  
Output:  μ*, β* and F (μ*, β*)     

Step1. For i= 1; i = p; i++   
Set μi ← current service rate; 

For j = 1; j = d; j++ 
Set βj ← current buffer size; 

Step2. Calculate Lq and λb using Eq. (5) - Eq. (9) 
Calculate PK and λK using Eq. (2) and Eq. (10-12) 
λM ← λ ‒ λb ‒λK ;  

Step3. Set λM ←arrival rate at the middle node queue; 
Calculate Lq*, Wq* and λr using Eq. (13)-Eq. (19) 
λF ←λM ‒λr ;  

Step4. Set λF ←expected final throughput rate; 
                  Calculate ρF using Eq. (20)- Eq. (21) 

PL ←(λ ‒ λF)/ λ; 
If PL < x, then  

 Bring all cost parameters into the developed  
cost model and begin to calculate F (μi, βj) 

Else  
Return to step 1 and begin to test a next index. 

End   
Step5. If the joint value of (μi, βj) can obtain the minimum 

cost value in all tests, then,  

                   Output (μi, βj) and F(μi, βj)   
Else   

           Return to step 1 and begin to test a next index. 
End   

 
5 NUMERICAL VALIDATION  

5.1 System Performances  

To gain more insight into the designed system behavior, 
first of all we provide several experiments to observe the 
effect of resources provisioning on performances. Numer-
ical simulations are demonstrated by assuming λ=2500 
request/min, Ur= Ub=0.01, R=64 and the buffer size is made 
variable from 0, 16 to 32 in three steps. All computational 
programs are developed by using MATLAB.  
 

      

   Fig. 5 Arrival rate at the MN queue under various μ 

and the given β values. 

 

Fig. 6 Loss probability under various μ and the given                  

β values. 

Fig. 5 and Fig. 6 demonstrate the variation of the re-
quest arrival rate at the MN queue and the loss probabil-
ity distribution under different service rates and buffer 
sizes, respectively. It’s observed that increasing the ser-
vice rate can certainly improve the arrival rate at the MN 
queue. However, increasing the buffer size does not nec-
essarily improve the arrival rate at the MN queue. It can 
be seen that it will cause the highest loss probability if 
there has no buffer available and it does not contribute to 
reducing the loss probability through buffer over-
provisioning. Both performance gaps between different β 
values become smaller and converge to nearly equal as 
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the service rate further increases.  
 

5.2 Experimental Results   

The experiments have been conducted to validate that the 

optimal resources provisioning can be obtained by apply-

ing the heuristic algorithm and show that the CEA policy 

is practical. It’s assumed that λ=5200 request/min, 

Ur=Ub=0.006, R=100, while the loss probability constraint 

is 0.5%, denoted by SLA(0.5%). Since a server provision-

ing cost is mostly determined by the rent/purchase cost 

and power consumption cost, the server provisioning cost 

can be roughly estimated according to different require-

ments.  

Here, we assume [C1, C2, C3, C4, C5, C6, C7, C8] = [200, 30, 

20, 60, 50, 10, 5, 5] in experiments. The effect of varying μ 

and β values to find the minimum cost is shown in Fig. 7. 

It’s noted that the minimum cost of 27544.85 can be ob-

tained at the optimal solution (μ*, β*) = (62, 12). The loss 

probability distributions under various μ and β values are 

demonstrated in Fig. 8. The effect of the service rate on 

the loss probability variation is larger than the buffer size. 

As can be seen, reducing the loss probability at beginning 

can lower the cost (corresponds to Fig. 7). However, as 

the loss probability further reduces, it leads to no more 

cost reduction.  

This behavior is due to the fact that, maintaining an 

extremely low loss probability requires more resources 

provisioning, which directly results in high cost burden. 

The corresponding loss probability at the optimal solu-

tion is 0.29%. Simulation results have verified that the 

system can satisfy the SLA constraint and simultaneously 

obtain the minimum operational cost by applying the 

CEA policy. In the next experiments, system blocking 

probabilities under various μ and β values are shown in 

Fig. 9. As can be expected, the system blocking probabili-

ties can be reduced by increasing either the service rate or 

the buffer size. The lower blocking probability of 0.1% 

can be obtained at the optimal solution. After excluding 

the balking and the system blocking rate, the remaining 

arrival rates at the MN queue is shown in Fig. 10. The 

effect of the buffer size on the arrival rate at the MN 

queue is larger when the service rate is low; however, it 

becomes virtually undetectable when the service rate is 

high. 

                               

Fig. 7 Cost distributions under various                  Fig. 8 Loss probability distributions under  
μ and β values.                                                            various μ and β values. 
 

                                          

Fig. 9  System blocking probabilities under              Fig. 10 Arrival rates at the MN queue under 
various μ and β values.                                                   various μ and β values. 

The higher arrival rates at the MN queue of 5193.72 al-

so can be achieved by adopting the CEA policy. The re-

neging rate and the system throughput rate distributions 

are shown in Fig. 11 and Fig. 12, respectively. It’s noted 
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that the reneging rate can be reduced by increasing the 

service rate or lessening the buffer size. Besides, the im-

pact of the buffer size becomes virtually undetectable 

when the system operates at a higher service rate. The 

same tendency can be found in the throughput rate, as 

shown in Fig. 12. 

 

Fig. 11 Reneging rates under various 
     μ and β values 

 

 

Fig. 12 Throughput rates under various  
μ and β values. 
 

5.3 Comparison of Results 

A general approach, which implies that a solution is cal-

culated only by considering an absolute performance 

guarantee is used as a basis for comparison since most of 

the previous works [31], [32], [33] had adopted this ap-

proach to manage cloud resources. For the sake of sim-

plicity, here it’s referred to as a non-CEA policy since no 

system loss evaluations or cost optimization analyses are 

considered. Next, we try to show that the CEA policy is 

also applicable for a system with a fixed buffer size. Ex-

periments are conducted by assuming that λ=500 re-

quest/min, R=20 and both policies need to comply with 

the same loss probability guarantee of SLA(5%).  

Naturally, users react variously to different degrees 

of latency. In additional, many potential factors such as 

individual feelings, satisfaction, delay tolerant, etc. cannot 

be ignored since it may also influence user's decision. In 

the designed system, the abandonment information will 

be recorded at per planning period. For an existing cloud 

computing service, the balking and reneging potential 

factors can be obtained from an actual historical statistic. 

Here both parameters are randomly chosen and three 

different cases are performed. Both policies are evaluated 

by assuming potential balking/reneging factors (Ub; Ur) = 

(0.005; 0.005), (0.005; 0) and (0; 0.005) in order to study 

and compare the influence of different impatient situa-

tions on the operational costs and performances. Besides, 

different buffers of size 1, 10 and 20 are assigned. 
- (Ub; Ur) = (0; 0.005), in order to study the behavior of 

both policies when a system without balking 
but has the threat of reneging users.  

- (Ub; Ur) = (0.005; 0), in order to study the behavior of 
both policies when a system without reneg-
ing but has the threat of balking users.  

- (Ub; Ur) = (0.005; 0.005), in order to study the behavior of 
both policies when there have both threats of 
balking and reneging users in the system.  

Comparisons of the controlled service rates are 

shown in Fig. 13. As can be seen, it will result in a higher 

service rate for reducing system losses when the given 

buffer size is less. The results show that the service rates 

determined by the non-CEA policy are lower than the 

CEA policy since the former tries to reduce resources 

provisioning cost as more as possible. However, the lower 

operational cost can be achieved by applying the CEA 

policy, as shown in Fig. 14. It’s noted that the system will 

result in higher cost under a larger given buffer size when 

there has the threat of reneging.  

 

   Fig. 13 Comparison of the service rate.  

26101418222630

59 60 61 62 63 64 65 66

0

2

4

6

8

10

12

Buffer sizeService rate

R
e

n
e
g

in
g

 r
a

te

2
6

10
14

18
22

26
30

59 60 61 62 63 64 65 66

5,140

5,150

5,160

5,170

5,180

5,190

Buffer sizeService rate

T
h
ro

u
g

h
p

u
t 

ra
te

1 10 20 1 10 20 1 10 20
23

26

29

32

35

38

41

44

     (0; 0.005)           (0.005; 0)       (0.005; 0.005) 
     Buffer size and (Ub; Ur)

S
e

rv
ic

e 
ra

te

 

 

Non-CEA policy

CEA policy

This is the author's version of an article that has been published in this journal. Changes were made to this version by the publisher prior to publication.
The final version of record is available at http://dx.doi.org/10.1109/TSC.2014.2365783

Copyright (c) 2014 IEEE. Personal use is permitted. For any other purposes, permission must be obtained from the IEEE by emailing pubs-permissions@ieee.org.



10 IEEE TRANSACTIONS ON SERVICES COMPUTING, TSC-2014-06-0107.R1 

 
 

 

   

Fig. 14 Comparison of the operational cost. 
Nevertheless, the costs can be reduced by applying 

the CEA policy and they also can be maintained relatively 

stable as compared to the non-CEA policy. Comparisons 

of the throughput rate are shown in Fig. 15. It’s noted that 

the throughput rate can be improved significantly by ap-

plying the CEA policy.  

 

Fig. 15 Comparison of the throughput rate. 

 

Fig. 16 Cost improvement rate. 

Finally, we measure the cost improvement ratio, 

which calculates the relative value of improvements to the 

original value instead of the absolute value; the results are 

shown in Fig 16. The relative improvement rate is up to 

46% in terms of cost reduction. The comparison of results 

has shown that more cost-saving and throughput rate 

enhancement can be achieved by applying the CEA poli-

cy. 

6  CONCLUSION AND FUTURE WORK 
 
Developing a successful service system necessitates tak-
ing into account not only system control factors but also 
user behaviors. However, most existing studies fail to 
offer an effective system control to capture optimization 
opportunities when facing impatient users and various 
incurred costs. To tackle the problem, the effect of re-
sources provisioning on system losses and the through-
put rate are studied in our work. A cost model is devel-
oped to conduct the costs/performances tradeoff accord-
ing to the incurred costs, system losses, resources provi-
sioning and system performances.  

The proposed CEA policy contributes to addressing 
the optimal service rate and buffer size controls in a sys-
tem with a finite buffer and impatient users. Experiment 
results have shown that realizing cost-effective resources 
provisioning within a loss probability guarantee can be 
obtained by applying the CEA policy. As compared to a 
system without applying our approach, the benefit of 
reducing cost is up to 46 percent. As for future works, we 
plan to analyze more challenging issues such as traffic 
load control mechanisms, finite population concerns, etc. 
for conducting a comprehensive control strategy.  
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