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Abstract—As huge data are increasingly generated and ac-
cumulated, outsourcing data for storage, management, and
knowledge discovery is becoming a paradigm. However, given
that a lot of sensitive information and valuable knowledge are
hidden in data, the outsourcing of data is vulnerable to privacy
crises and leads to demands for generalization or suppressing
techniques to protect data from re-identification attacks. Differing
from previous works that aim at satisfying the k-anonymity on
individual patterns, we propose the k-anonymity of multi-pattern
(KAMP) problem to protect data from re-identifying users by
using a combination of patterns and also propose the KAMP-
p1 algorithm to generalize and suppress data. To study the
effectiveness of the proposed algorithm, we conduct experiments
on a synthetic and a small real dataset. The experimental results
show that KAMP-p1 algorithm can satisfy k-anonymity while
preserving many patterns in order to retain useful knowledge
for decision making.

I. INTRODUCTION

Nowadays, with the advances of sensing technologies,
wireless communication techniques and the prevalence of
intelligent mobile devices, a tremendous number of applica-
tions, such as monitoring, tracking, and entertainments, are
being developed and great amounts of data are generated
and accumulated, which demands a cost effective approach to
maintain and manage data. For this reason, outsourcing data
is becoming a paradigm. Furthermore, to improve quality of
life, efficiency of administrators, security and safety of the
public, governments and academia also increasingly demand
the sharing of public data for knowledge discovery in order
to devise policies and political strategies. However, since
sensitive information, confidential messages, valuable business
secrets, and unwilling to be revealed details can be hidden in
data, many privacy preserving issues emerge which stagger
the progress of the release of data. To trade off privacy issues
and public/business profits, a lot of effort has been devoted to
hiding sensitive information, such as patient identity in patient
records or the buyer information in purchasing transactions
[18][19]. To protect data from re-identification attacks, one
emerging protection model is k-anonymity [11][12][17] which
has been recently proposed to provide a compromising data
protection by imposing uncertainty. Specifically, a k-anonymity
technique removes sensitive information from data such that
for each person the information in the released data cannot be
distinguished from at least k-1 other individuals in the same
release.

In the last few decades, many data mining techniques
have been proposed and applied to increase business profits
or to improve human life. Among the many mining tech-
niques, pattern discovery involves the discovery of important
characteristics from data, such as a motif in DNA sequences
[1][4][5], consumer purchasing behavior in transaction data
[3], and movement regularity in the location sequences [6][7].
In general, the discovered patterns are more representative
and contain more knowledge than the original data. What
is worth noticing is that in many cases, with some easily
obtained patterns, it is not difficult to re-identify a person
from released data, e.g., if a man is used to purchase new-born
diapers, it can be easy to re-identify the buyer of a transaction
with diapers because everybody knows which family has a
newborn baby in a small town. And what is worse is that the
association of a few patterns divulges more clues to recognize
identities. For example, with some prior knowledge about
the address of a worker, the commute path of his report for
duty can be predicted. Although the departure pattern may be
shared by other village residents and the arrival pattern can be
shared by many colleagues in the same factory, by combining
the departure pattern with the arrival pattern, the owner of
a complete route can be vividly portrayed. What can be
imagined is that as more data become published or outsourced,
more clues, such as the buying pattern, movement patterns of
departure and arrival, can be accessed, thus even worsening
the multi-pattern re-identification problem. Consequently, more
people will find themselves enmired in a security and privacy
crisis sooner or later.

Similar to the above examples, many mining results violate
privacy issues [2]. Therefore, instead of providing k-anonymity
to data, a lot of studies focus on anonymizing mining re-
sults data [16][13][14][15][21]. Some consider satisfying k-
anonymity for individual patterns and a few works further
handle the inference problem across large itemsets [14][15].
However, few consider the multi-pattern re-identification prob-
lem.

To provide k-anonymity, our idea is to divide patterns into
common patterns and special patterns, with a special pattern
is a pattern that is not shared by more than k people, and
then only remove or blur special patterns before data release.
Furthermore, to prevent re-identification attacks by using the
combination of patterns, we first formulate the k-anonymity
of the multi-pattern (KAMP) problem and discuss the gen-
eralization and suppression approaches for transactional data;
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and based on these, we introduce our KAMP-p1 algorithm that
solves the KAMP problem in a greedy manner.

To show the effectiveness of our KAMP-p1 algorithm, we
propose the average pattern distance PD as the evaluation
metric and conduct experiments with a real dataset, BMS-
WebView-1, and a synthetic dataset generated by the IBM
generator, IBM-SynData, in order to study the impact of
several important parameters, including the minimal support
count σ, the minimal anonymity degree threshold k, and the
maximal size threshold M , on information loss in terms of
the average pattern distance PD. Our experimental results
first show that re-identification by using a combination of
patterns is especially severe when the data inherently contains
more patterns as well as more pattern combinations (small
σ, large M ), or when the privacy preserving requirement
is more precise (big k). They also show that our KAMP-
p1 algorithm can effectively suppress or generalize sensitive
and individual patterns combinations to protect privacy while
retaining pattern-level information for its usability.

The rest of this paper is organized as follows. Section II
first shows the related works and then formulates the KAMP
problem as well as defines parameters and the evaluation
metric. In Section III, we discuss the generalization and
suppression operations and propose our KAMP-p1 algorithm.
The performance study is described in Section IV and the paper
concludes in Section V.

II. PRELIMINARY

A. Related Works

Pattern Discovery is to discover important, representative,
or comprehensible features hidden in sequence data. These fea-
tures may be the motifs that are a short distinctive subsequence
shared by a number of related gene or protein sequences
[1][4][5] or repeating movement subsequence that represent
regular movement behavior in moving objects’ trajectories
[6][7]. Other examples include periodic events in Web system
logs [8], similar recurring phrases in word sequences [9], and
repeating themes in music [10]. These features are usually
easier to understand and more meaningful to illustrate than the
original sequences. For example, a motif of a protein sequence
is an ordered list of amino acids which presents structural
characteristics and can determine a high level functionality and
often plays the role of a signature in the course of evolution;
motifs thus play a key functional or structural role in analyzing
the diversity or closeness of various species. Unfortunately,
they also involve many privacy issues, such as species and
diseases. Similarly, the movement patterns in trajectory se-
quences are the repeating subsequences that can be utilized
to foretell the locations in the future. Thus, a lot of research
is aimed at discovering useful movement patterns for the
development of intelligent applications. However, movement
patterns also lead to security and safety problems. There are
several other mining consequences that also yield these kinds
of side effects and have thus received greater attention in an
effort to protect mining results instead of the original data by
hiding patterns that are associated with someone or a small
community [19][18].

k-anonymity is a new emerging privacy preserving model
[11][17]. Friedman et al. [12] proposed an algorithm that

combines mining and anonymization in a single process for
directly building a k-anonymous decision tree from a private
table. In [16], the authors assume the maximum knowledge
of an adversary is at most m items in a specific transaction
and proposed an efficient generalization algorithm to provide
km anonymity for raw transactional datasets with itemsets
containing less than or equal to m items. In [14] [15], the
researchers figure out the inference problem across large item-
sets and derive inference channel detection methods to generate
anonymized association rules. They also proposed information
loss measurement metrics for performance evaluation. In [21],
the authors suggested hiding infrequent, and thus potentially
sensible, subsequences before disclosing the sequential data.
Their approach utilizes a prefix tree in infrequent subse-
quence pruning and guarantees that the disclosed data are k-
anonymous.

B. Problem Formulation

Let I = {i1, i2, . . . , io} be a set of items and U denotes
a set of users. A dataset D is a set of transactions, where a
transaction t is a tuple of user identity and a set of items on
I , i.e., t =< u, j >, u ∈ U, j ⊆ I .

Definition 1 (Support Count): An itemset Ij , Ij ⊆ I , is
contained by a transaction t =< u, j > if Ij ⊆ j. The
number of transactions in D that contains Ij is defined as the
support count of Ij , denoted by sup(D, Ij). And the number
of transactions of a user u that contains Ij is sup(D,u, Ij).

Definition 2 (Pattern): For a given dataset D and a min-
imal support count σ, a pattern p is a frequent itemset with
the support count larger than or equal to the minimal support
count, i.e., sup(D, p) ≥ σ. All of the patterns of D are denoted
by FP (D), i.e., FP (D) = {p|∀p ⊆ I, sup(D, p) ≥ σ}.

A pattern p is contained by a user if at least one of his
transactions in D contains p, i.e., ∃ti =< ui, Ii >∈ D such
that ui = u and p ⊆ Ii. All of the patterns of user u in
D is denoted by FP (D,u) = {p|p ∈ FP (D) and ∃ti =<
ui, Ii >∈ D such that ui = u and p ⊆ Ii}.

Definition 3 (Maximal Pattern): A maximal pattern is a
pattern of a user u in D that it’s not a subset of any other
pattern in FP (D,u). All of the maximal patterns of u are
denoted by MP (D,u).

Definition 4 (m-pattern Set): An m-pattern set is a set of
m maximal patterns. All m-pattern sets of u are all of the
m-combinations of the maximal patterns of u in D, denoted
by CP (D,u,m).

For example, while Colin has 3 maximal patterns,
i.e., MP (D0, Colin) = {A,B,C}, CP (D0, Colin, 2) =
{{A,B}, {A,C}, {B,C}}.

Definition 5 (Combination of Patterns, CP): For a maxi-
mal size threshold M , CP (D,u) is all combinations of the
maximal patterns of u in D with a size less and equal than

M , i.e., CP (D,u) =
⋃M

m=1 CP (D,u,m). In addition, the
union of all users’ m-pattern sets, m ≤ M , is denoted by
CP (D), i.e., CP (D) =

⋃
u∈U CP (D,u).

Following the previous exam-
ple, given M = 3, CP (Colin) =
{{A}, {B}, {C}, {A,B}, {A,C}, {B,C}, {A,B,C}}.
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Definition 6 (Anonymity Degree, AD): For a pattern set
cp, we say that cp is contained by u if ∀ pattern p in cp,
there exists a maximal pattern p′ in MP (D,u) such that p
is a subset of p′. The anonymity degree (AD) of pattern set
cp is defined as the number of users that contains cp, i.e.,
AD(D, cp) = |{u|u ∈ U and ∀p ∈ cp, ∃p′ ∈MP (D,u), such
that p ⊆ p′}|.

Definition 7 (k-anonymized): For a minimal anonymity
degree k, an m-pattern set mp is k-anonymized if its
anonymity degree is larger than or equal to k, i.e.,
AD(D,mp) ≥ k; otherwise, it is un-k-anonymized.

Problem Formulation: With the above definitions, we
formulate the k-anonymity of multi-pattern (KAMP) problem
below. Given a transaction dataset D, a minimal support count
σ, a minimal anonymity degree threshold k, and the maximal
size threshold M , the KAMP problem is to generate the
transaction dataset D′ such that the patterns of D′ retain
most information as that of D and any m combination of
patterns of D′, m ≤M , is k-anonymized, i.e., ∀u ∈ U, ∀cp ∈
CP (D′, u), AD(D′, cp) ≥ k.

C. Evaluation Metric

Since the difference of a user’s patterns before and after
anonymization directly relates to the amount of modifications
that were done on the original transaction dataset, we define
the pattern distance regarding individual users as the measure
of information loss and take the average pattern distance as
the evaluation metric. Specifically, let Pi and P ′

i denote the
maximal pattern set of user i before and after anonymization,
respectively. The distance of a maximal pattern p with respect
to a maximal pattern set P is

distance(p, P ) = minp′∈P (p ∪ p′ − p ∩ p′).

Then, the pattern distance PD(i) of user i is

PD(i) =
∑

p∈Pi

distance(p, P ′
i ) +

∑

p′∈P ′
i

distance(p′, Pi).

For example, if P0 = {A = {i0}, B = {i1, i2}, C = {i2, i3}}
and P ′

0 = {A,B,D = {i4, i5}}, then PD(0) = (0 + 0 +
2)+ (0+ 0+ 3) = 5. And the average pattern distance PD is
defined as

PD =

∑|U |
i=1 PD(i)

|U | .

According to the definition of PD, we can see that if every
user’s patterns remain unchanged, PD = 0; otherwise, as more
patterns are modified for anonymization, PD increases.

III. THE PROPOSED ALGORITHM

To solve the KAMP problem, we propose a framework
comprising two phases. In phase 1, we regenerate the patterns
of D with the goal of keeping the maximum amount of pattern-
level information. And in phase 2, we modify D according to
the regenerated patterns with the goal of preserving the transac-
tion data and doing as little modification as possible. Due to the
page limitations of this paper, we focus on the regeneration of
the patterns to meet k-anonymity requirements. To satisfy the
k-anonymity problem while retaining the maximum of pattern-
level information in order to retain its practical usefulness,

we first introduce two operations, including generalization and
suppression, that are used to regenerate every user’s patterns.

Generalization: For an un-k-anonymized m-pattern set
mp, i.e., AD(mp) < k, the generalization operation adds
patterns to other K −AD(mp) users so as to complete mp’s
anonymity degree to k. Basically, the simplest way to increase
the anonymity degree is to find K − AD(mp) users and add
deficient items to their transactions to make the K−AD(mp)
users contain mp. Though the approach can complete the
anonymity degree of mp, the addition operations may lead
to changes of the users’ patterns and cause information loss in
terms of pattern distance. Further, the pattern changes may
result in more combinations of patterns to check for their
anonymity degrees and the side effect can further destroy
pattern-level information. Therefore, the key to generalization
is to choose the K − AD(mp) users properly in order to
minimize the average pattern distance. For this reason, we
adapt the strategy of avoiding the creation of new pattern
combinations that are not in CP (D) so as to minimize the
side effects. More specifically, let PS(S) denote the set of
all subsets of S, i.e., the power set of S, and we search for
candidate users, where a user is recognized as a candidate if

∀cp′ ∈ {cp ∈ PS(mp)×CP (D,u), |cp| ≤M}, cp′ ∈ CP (D).

For all candidates, we sort them by the number of patterns
that individual candidates lack, i.e., |mp − FP (D,u)|, in
descending order and choose the smallest K−AD(mp) users
to make them contain mp. By this approach, we prioritize the
users with similar patterns so as to minimize modifications for
the generation operation. On the other hand, if the candidates
are insufficient for our needs, we create a virtual user and
assign cp to him to increase the anonymity degree until
AD(cp) ≥ k.

Suppression: For an unqualified m-pattern set, mp, the
suppression operation is to remove patterns in mp from
AD(mp) users that contain mp in order to decrease its
anonymity degree to zero. Specifically, to suppress an mp, at
least a pattern p ∈ mp should be removed from all transactions
of AD(mp) users. Note that removing a pattern p from the
AD(mp) users is a complex operation. To avoid a vicious
spiral of suppression, the removing operation should evade
harming the anonymity degree of those already k-anonymized
m-pattern sets. Moreover, in case other users lose patterns
because of the removing operation, we should not decrease
the support counts of patterns other than p to lower than
σ. In addition, we should also avoid removing a pattern
that results in producing originally in-existing patterns. In
summary, the key to the suppression operation is to properly
choose which pattern to remove from which AD(mp) users
so as to minimize the average pattern distance. Let Ump

denote the AD(mp) users and T (Ump, p) denote all of the
transactions of the users in Ump that contain pattern p. In
order to choose Ump to remove a pattern p, p ∈ mp, from
T (Ump, p), our strategy contains three rules:
1) Not harming the anonymity degree of the k-anonymized m
pattern set of the AD(mp) users. Specifically, let KM(Ump)
denote the k-anonymized m-pattern sets and AD(Ump, cp)
denote the number of users in Ump that contains a pattern
set cp; the first rule is

∀cp ∈ KM(Ump), AD(cp)−AD(Ump, cp) ≥ k.
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2) Not suppressing other patterns contained by any user in
Ump. Specifically, let FPUmp denote the patterns contained
by at least one the transactions in T (Ump, p); the 2nd rule is

∀p′ ∈ (FPUmp − p), sup(D, p′)− |T (Ump, p)| ≥ σ.

3) Producing no new patterns. Let T ′(Ump, p) denote the
remnants of T (Ump, p) after removing p. The 3rd rule is

∀t ∈ T ′(Ump, p), ∀p ⊆ t, p ∈ FP (D).

As shown in Algorithm 1, our KAMP-p1 algorithm adapts
a greedy strategy, starting from m = 1 to M , to generalize or
suppress the m-pattern sets of all users since combinations of
fewer patterns are prone to k-anonymized (Lines 2-19). As in
Lines 5 and 6, Ck is a set of the k-anonymized pattern combi-
nations with size ≤ m while C∗

m is the set of un-k-anonymized
pattern combinations with the size equal to m. In Line 7, the
un-k-anonymized m-pattern sets are sorted by their anonymity
degrees in descending order; from Line 8 to Line 18 each of
them are generalized or suppressed depending on whether it is
suppressible according to not only the three suppression rules
but also the cost of suppression and generation in terms of the
number of transactions to be modified. The generation cost of
m-pattern set cp is k −AD(cp) while the suppression cost is
|T (Ump, p)|. As in Lines 9-11, we check whether Ump exists
such that removing p from T (Ump, p) satisfies the suppression
rules, where p is an element of the m-pattern set, cp. In line
12, we compare the cost of generation with that of suppression
and choose the operation with a lower cost. Note that while
multiple pairs of Ump and p exist, we choose the pair with
the minimal cost as the later half of Line 12. If no such pair
exists, the suppression cost is ∞. Next, either the suppression
operation (Line 16) or the generation operation (Line 13) is
carried out to update the maximal pattern table, MP . Finally,
after all un-k-anonymized m-pattern sets are blurred or hidden,
MP is returned for phase 2 processing.

Algorithm 1 KAMP-p1

Input: A maximal pattern table MP , a minimal support count
σ, an anonymity threshold k, and maximal size of m-
pattern sets M

Output: A k-anonymized pattern table MP
1: Ck = ∅
2: for m = 1 to M do
3: Cm = get union of all user’s m-pattern sets from MP
4: if Cm == ∅ then exit for
5: Ck = Ck ∪ {cp|cp ∈ Cm and AD(cp) ≥ k}
6: C∗

m = {cp|cp ∈ Cm and AD(cp) < k}
7: sort C∗

m by anonymity degree in descending order
8: for each cp ∈ C∗

m do
9: for each p ∈ cp do

10: if p is suppressible then add p to Ps
11: end for
12: if Ps == ∅ or gene cost(cp) ≤

min
p∈Ps

supp cost(cp, p) then

13: generalize(MP, cp)
14: add cp to Ck

15: else
16: suppress(MP, cp, p)
17: end if
18: end for
19: end for
20: return MP

Fig. 1. Examples suppression and generalization operations; (a)maximal
pattern table, (b)result of m = 2, and (c)final result.

For example, assuming k = 3, M = 3, and σ =
2, Fig. 1(a) shows a maximal pattern table of 14 users,
where each capital letter represents a maximal pattern. First,
while m = 1, since all 1-pattern sets are k-anonymous
already, the process continues to m = 2. As m = 2,
only {B,C} and {B,F} are un-k-anonymized 2-pattern sets,
where AD({B,C}) = 2 and AD({B,F}) = 1. Assume
supp(u2, B) = 1 and supp(u7, B) = 1, the suppression cost
supp cost({B,C}, B) = supp(u2, B) + supp(u7, B) = 2.
Since AD(C) = 3 and suppressing C from u2 and u7

violates suppression rule 1 (not harming those already k-
anonymized m-pattern sets), supp cost({B,C}, C) = ∞.
Thus, Ps = {B}. On the other hand, the generalization cost
is gene cost({B,C}) = k − AD({B,C}) = 1. Therefore,
generalization is chosen. To generalize {B,C}, we examine
the users one by one for the candidates. For example, given
that adding {B,C} to u1 creates {C,D} and {C,E} that
are not in CP (D), u1 is not a candidate. After examining
u1, u3 − u6, and u8 − u14, only u9 is a candidate and thus
{B,C} is added to u9 to make AD({B,C}) = 3. As for
{B,F}, assume supp(u4, B) = 1, and supp(u4, F ) = 3, since
both B and F are suppressible, i.e., Ps = {B,F}, the mini-
mal suppression cost is minp∈{B,F}supp cost({B,F}, p) =
supp(u4, B) = 1. Compared with gene cost({B,F}) = 2,
we suppress B from u4. Fig. 1(b) shows the results for
m = 2. As m = 3, {B,D,E} and {A,B,D} are un-k-
anonymized. For {B,D,E}, since all of B, D, and E are
not suppressible, we generalize it by adding D to u11. For
{A,B,D}, since AD({A,D}) = 3, removing any {A,D}
decreases the anonymity degree, which violates suppression
rule 1. In this case, only B is suppressible and thus we remove
B from u3. The final result is shown in Fig. 1(c); note that
only 4 users’ maximal patterns are influenced in this example.

IV. EXPERIMENTAL RESULTS

To show the effectiveness of our algorithm, we conduct
experiments with a real dataset, BMS-WebView-1 [20], as
well as a synthetic dataset generated by the IBM generator
[22], abbreviated as IBM-SynData, to study the impact of
parameters M , k, and σ on the average pattern distance PD.
BMS-WebView-1 is a Web log down-loaded from the KDD-
Cup 2000 home page. It contains 59602 transactions and 497
distinct items. The maximal and minimal transaction sizes
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Fig. 2. Histograms of the maximal pattern number of individual users in (a)
BMS-WebView-1 and (b) IBM-SynData.

are 267 and 1 respectively, and the average is 2.5 items per
transaction. Since it lacks the user identity information, we
cluster similar transactions into 5000 groups by using Jaccard
coefficient 1 and assign each group of transactions to a user,
such that the average number of transactions per user is about
11.9. With min-support 0.02, each user is associated with at
most 20 maximal patterns, at least one pattern, and 3 maximal
patterns on average. As for the synthetic dataset, it contains
5000 transactions on 1000 distinct items and the average
transaction size is 5. Moreover, the number of patterns is 1000
and the average pattern size is 3. The correlation between
consecutive patterns is 0.25. Similar to the BMS-WebView-1
dataset, we cluster similar transactions into 500 groups using
Jaccard coefficient and the average number of transactions per
user is 10. Fig. 2 shows the histograms of maximal pattern
number of individual users in BMS-WebView-1 and IBM-
SynData. In BMS-WebView-1, as the support varies from
0.019 to 0.024, the number of maximal patterns of individual
users decreases; most users have two maximal patterns and
a few users have more than 10 maximal patterns. In IBM-
SynData, the trend is apparent as the minimal support varies
from 0.06 to 0.09 and almost all users contain less than 6
maximal patterns.

A. Experiment 1: Un-k-anonymized m-pattern Sets

In the first experiment, we study the order of severity
of the KAMP problem. Fig. 3 presents the number of un-
k-anonymized m-pattern sets in BMS-WebView-1 and IBM-
SynData as the minimal support varies from 0.019 to 0.024 and
0.06 to 0.09, respectively. In both datasets, as M increases,
there are more un-k-anonymized m-pattern sets. The trend
is more obvious when the minimal support is small since
users tend to contain more maximal patterns, and as a result
there will be more un-k-anonymized pattern combinations. The
results suggest that the risk of re-identification by using a
combination of patterns is more serious. Fig. 4 depicts the
un-k-anonymized situations of BMS-WebView-1 and IBM-
SynData as k varies from 15 to 40 and 1 to 6, respectively.
As a larger k indicates a stricter anonymity requirement, there
are more un-k-anonymized m-pattern sets as k is larger. Also,
as shown in Fig. 3 and Fig. 4, the tendency of IBM-SynData
is to slow down as M approaches 6 because almost all users
contain less than 6 maximal patterns, thus indicating that the
number of pattern combinations does not augment rapidly as
M increases.

1Jaccard(A,B) =
|A∩B|
|A∪B| , where A and B are two itemsets.

Fig. 3. No. of un-k-anonymized m-pattern sets in (a) BMS-WebView-1 and
(b) IBM-SynData as M and σ vary.

Fig. 4. No. of un-k-anonymized m-pattern sets in (a) BMS-WebView-1 and
(b) IBM-SynData as M and k vary.

B. Experiment 2: Effectiveness of the KAMP-p1 Algorithm
(Impact of M , k, and σ on PD)

In the 2nd experiment, we show the effectiveness of the
KAMP-p1 algorithm in terms of PD. Note that PD indicates
the pattern-level information loss, with a larger PD represent-
ing a greater loss. Fig. 5 shows the curves of PD versus M
as supp varies from 0.019 to 0.024 for BMS-WebView-1 and
from 0.06 to 0.09 for IBM-SynData. It can be seen that as the
minimal support becomes larger, PD becomes smaller. This is
because with a larger minimal support, the discovered patterns
are more general and shared by more users, i.e., fewer sensitive
and private m-pattern sets to generalize or suppress, thus
requiring fewer modifications to achieve k-anonymity. Fig. 6
depicts the curves of PD versus M as k varies from 15, 20,
..., 40 and from 1 to 6 for BMS-WebView-1 and IBM-SynData
respectively. As k increases, PD becomes larger, which means
that a stricter privacy requirement necessitates a greater effort
to provide protection (i.e., perform more modifications), which
in turn means that the pattern-level information loss becomes
larger. Note that in both Fig. 5(a) and Fig. 6(a) the curves’
turning points are near m = 3 and PD is almost unchanged
after m = 5. This is because most users contain 3 maximal
patterns. In addition, as the number of m-pattern sets increases
as m increases, PD becomes larger with m at the beginning.
Then, sensitive m-pattern sets with m = 3 are k-anonymized
at m = 3, and conveniently those un-k-anonymized m-
pattern sets disappear, thus complying with the generation and
suppression operations performed for m ≤ 3. Fig. 5(b) and Fig.
6(b) reveal similar trends in IBM-SynData. Compared with
Fig. 2, the turning points are unhurried around 4 because in
IBM-SynData several users contain 4 to 6 maximal patterns
as supp = 0.07.
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Fig. 5. Pattern-level information loss (PD) of (a) BMS-WebView-1 and (b)
IBM-SynData for various σ.

Fig. 6. Pattern-level information loss (PD) of (a) BMS-WebView-1 and (b)
IBM-SynData for different privacy preserving requirement (k).

V. CONCLUSION AND FUTURE WORKS

In this work, we study the problem of k-anonymity of
multi-pattern (KAMP) to protect data from re-identifying users
by using the combination of patterns. To solve the KAMP
problem, we derive one generalization rule and three suppres-
sion rules for the generalization and suppression operations and
propose the KAMP-p1 algorithm that adapts a greedy strategy
to blur and hide sensitive m-pattern sets. For the performance
study, we conduct experiments with a real dataset, BMS-
WebView-1, and a synthetic dataset, IBM-SynData, generated
by the IBM generator. Our experimental results show that as
the data inherently contains more patterns as well as more
pattern combinations, the minimal support is smaller, or the
privacy preserving requirement is more precise, it is prone
to having a larger number of sensitive and individual pattern
combinations, which means that the risk of re-identification
by using a combination of patterns is more serious. In addi-
tion, the experimental results also indicate that our KAMP-
p1 algorithm can effectively suppress or generalize sensitive
and individual patterns combinations to protect privacy while
retaining pattern-level information for its practicality.

Future research directions include studying the computing
complexity of the KAMP-p1 algorithm and designing an
efficient algorithm to overcome the bottleneck. Furthermore,
the completion of the whole framework and the conducting of
more comprehensive experiments for the performance study
are still required.
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