1666

IEEE TRANSACTIONS ON BIOMEDICAL ENGINEERING, VOL. 55, NO. 6, JUNE 2008

Band Expansion-Based Over-Complete Independent
Component Analysis for Multispectral Processing
of Magnetic Resonance Images

Yen-Chieh Ouyang, Member, IEEE, Hsian-Min Chen, Jyh-Wen Chai, Clayton Chi-Chang Chen*, Sek-Kwong Poon,
Ching-Wen Yang, San-Kan Lee, and Chein-1 Chang, Senior Member, IEEE

Abstract—Independent component analysis (ICA) has found
great promise in magnetic resonance (MR) image analysis. Unfor-
tunately, two key issues have been overlooked and not investigated.
One is the lack of MR images to be used to unmix signal sources
of interest. Another is the use of random initial projection vectors
by ICA, which causes inconsistent results. In order to address the
first issue, this paper introduces a band-expansion process (BEP)
to generate an additional new set of images from the original MR
images via nonlinear functions. These newly generated images are
then combined with the original MR images to provide sufficient
MR images for ICA analysis. In order to resolve the second issue,
a prioritized ICA (PICA) is designed to rank the ICA-generated
independent components (ICs) so that MR brain tissue substances
can be unmixed and separated by different ICs in a prioritized
order. Finally, BEP and PICA are combined to further develop a
new ICA-based approach, referred to as PICA-BEP to perform
MR image analysis.
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I. INTRODUCTION

NDEPENDENT component analysis (ICA) has shown great
I success in functional magnetic resonance imaging (fMRI),
which is a method that provides functional information of mag-
netic resonance (MR) images in time series as a temporal func-
tion [1]. Recently, a new application of ICA to MR image (MRI)
analysis was investigated by Nakai et al. in [2] for contrast en-
hancement of gray matter (GM) and white matter (WM). A
major difference between fMRI and MRI analysis is the mixing
matrix to be used by ICA for signal source separation. Since the
samples for fMRI are collected along a temporal sequence with
the number of samples, denoted by L, generally greater than
the number of sources to be separated, denoted by p, the ICA
implemented in fMRI is actually under-complete in the sense
that ICA deals with under representation of a mixed model,
referred to as under-complete ICA (UC-ICA). Under such cir-
cumstance, the ICA intends to solve an over-determined system
with L equations specified by the number of samples and p un-
knowns represented by signal sources to be separated, and there
will be no solutions for L > p in general, because more than one
independent component (IC) must be used to accommodate a
single signal source. This may be one reason that UC-ICA gen-
erally requires dimensionality reduction (DR). By contrast, the
samples used for MRI analysis are a stack of images acquired
by different pulse sequences specified by three MR tissue pa-
rameters, spin—lattice (T1), spin—spin (T2) relaxation times, and
proton density (PD). So, generally speaking, these three images,
T1 weighted, T2 weighted, and PD weighted, can be used for
MRI analysis. If the number of signal sources to be separated
p is greater than the number of different combinations of pulse
sequences, L with L < p, then one IC must be used to accom-
modate more than one signal source. In this case, ICA must deal
with an under-determined system using an over-complete rep-
resentation of a mixed model, referred to as over-complete ICA
(OC-ICA). Accordingly, fMRI and MRI analysis are essentially
different applications and approaches developed for one appli-
cation usually cannot be directly applied to another. However, in
order to take advantage of ICA implemented as UC-ICA in the
same way that it is applied to the fMRI, Nakai er al. assumed
that the number of sensors L is greater than or equal to the
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number of sources p, where the number of sensors corresponds
to the combinations of acquisition parameters echo time (TE)
and repetition time (TR), and a signal source is represented by
a tissue cluster characterized by a unique combination of T1
and T2 relaxation times. Using the changes in signal intensity
of each tissue cluster reflected by combinations of TR and TE
before and after an ICA transform, the contrast resulting from
effects of ICA can be used to perform image evaluation for a
particular tissue such as GM and WM. Unfortunately, Nakai
et al.’s ICA approach overlooked a crucial and important issue.
If we interpret the number of pulse sequences used in MR ac-
quisition, denoted by L, and brain tissue substances such as GM
and WM, cerebral spinal fluid (CSF), muscle, skin, fat, etc., as
signal sources to be separated, denoted by p, the L is actually
less than p, not great than p. Consequently, the problem to be
solved for MRI analysis is indeed an under-determined system
with L < p, which violates the key assumption made in Nakai
et al.’s ICA approach as well as in most ICA-based approaches
used for fMRI. Interestingly, little work has been done regard-
ing using OC-ICA to perform MRI analysis. Another issue that
was not addressed by Nakai et al. is the use of random initial
projection vectors by ICA to produce ICs. The problem with
this random approach results from the fact that the final sets
of projection vectors produced by two distinct random initial
projection vectors are generally different. As a consequence, an
ICA transform implemented by the same user in different runs
or different users at the same time will produce different sets of
ICs. This serious inconsistency undermines repeatability of ICA
and makes ICA unstable. Additionally, due to the use of random
initial projection vectors, the order of ICA-generated ICs is com-
pletely random and does not necessarily indicate the significance
or importance of an IC. In other words, an IC generated earlier
need not be more important than the ones generated later. Conse-
quently, image evaluation must wait until all ICs are generated.
This paper is aimed to addressing these two issues and further
develops a rather different approach to implementing ICA, OC-
ICA to improve Nakai et al.’s ICA approach, which is UC-ICA.

First of all, we need to resolve the issue of lacking band images
in MRI analysis. Interestingly, an idea called band-expansion
process (BEP) proposed by Ren and Chang [3] can be used for
this purpose. The BEP makes use of nonlinear functions to cre-
ate additional band images that capture nonlinear correlations
among the original MR images. These newly BEP-generated
images are then combined with the original set of MR im-
ages to provide sufficient number of band images to convert
OC-ICA to UC-ICA so as to satisfy the assumption made by
Nakai et al.’s ICA approach. The second issue can be addressed
by a new concept, called prioritized ICA (PICA), which is orig-
inated from a recent work of using ICA to perform DR for
hyperspectral imagery [4]. As a result of PICA, ICs can be
appropriately prioritized according to different applications. Fi-
nally, implementing PICA in conjunction with BEP gives rise to
a new approach to be called PICA-BEP, which can implement
OC-ICA to perform the same contrast enhancement of GM
and WM that was carried out by Nakai et al.’s approach using
UC-ICA [2].
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II. ISSUES OF OVER-COMPLETE ICA

The main key idea behind ICA assumes that data are linearly
mixed by a set of separate independent unknown signal sources
by which these signal sources can be unmixed according to
their statistical independency measured by mutual information.
In order to validate its approach, an underlying assumption is
that at most one source in the mixture model can be allowed to
be a Gaussian source. This is due to the fact that a linear mixture
of Gaussian sources is still a Gaussian source. More specifically,
let x be a linearly mixed signal source vector expressed by

xr = As (D

where A is an unknown L X p mixing matrix and § =
(s1,82,...,8,)Tis also an unknown p-dimensional signal
source vector needed to be separated. The goal of ICA is to
process the observed mixed signal source x in (1) and further
find an unmixing matrix W in such a manner that the p unknown
signal sources in the signal source vector s can be separated via
a demixing equation [1], [5], [6] given by

s=Wwx. 2

Despite the fact that ICA has found its potential in many
applications, it cannot be blindly applied without extra care.
In particular, several crucial issues have been overlooked and
ignored in fMRI and MRI analysis. One key issue is the mixing
matrix A to be used in the fMRI and MRI analysis. When ICA
is applied to fMRI, the signal source is 1-D signal and the
used ICA is generally under-complete in which the number of
observations L of the mixing matrix A in (1) is always greater
than the number of signal sources p to be unmixed, i.e., L > p.
In this case, there are no solutions to (1). In order to mitigate
this dilemma, a general approach is to use DR such as principal
components analysis (PCA) as a preprocessing step to reduce L
to p to make the mixing matrix A a square matrix. By contrast,
as ICA is applied to MR images as multispectral images, the
signal sources to be unmixed are actually 2-D images rather
than 1-D signals considered in fMRI. Therefore, the resulting
ICA is indeed over-complete in the sense that the number of
MR images, L, used in the mixing matrix A is smaller than
the number of signal signals, p with L < p, in which case,
one single IC must be used to accommodate multiple signal
sources due to the lack of data dimensionality. Because of that,
several problems that are never encountered in UC-ICA become
major issues in OC-ICA. For example, in MRI analysis, the data
dimensionality of L used in the mixing matrix A represents the
number of MR images, which are acquired by pulse sequences
such as T1, PD, T2, and the number of signal sources, p used
in the A indicates the number of brain tissue substances of
interest such as GM, WM, and CSF, etc. Additionally, there is
also noise present in MR images, which requires an additional
IC for its accommodation. In this case, the ICA needs at least
four ICs to separate the three signal sources, GM, WM, CSF
plus noise source. Unfortunately, with only three available MR
images, the ICA can only produce three ICs to accommodate
four signal sources, GM, WM, CSF, and noise. As expected,
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at least two sources must be unmixed into one single IC and
cannot be discriminated in this particular IC. Most importantly,
the noise can be spread into all three ICs to obscure analysis.
Such a phenomenon will not occur in fMRI, but becomes an
inevitable issue in MRI analysis, which was not addressed in
the past.

Another major problem is caused by the implementation of
ICA. In order to initialize an ICA algorithm such as the FastICA
developed by Hyvarinen and Oja [6] along with its web site [7],
a general approach is to randomly generate a set of projection
vectors to converge to a set of final projection vectors that pro-
duce desired ICs. However, this results in two major issues. One
is the use of random initial projection vectors. The final ICs
produced by the ICA are generally different if two different sets
of random initial projection vectors are used. This is because
noise is completely random and various levels of noise effects
can be introduced into different ICs. Furthermore, the orders
of ICs produced by ICA are also different if two different sets
of random initial projection vector are used. In other words,
unlike the PCA that produced the principal components (PCs)
in accordance with data variance, the order that ICs appear is
completely random and does not provide any indication of the
significance of ICs. As a consequence, different users may pro-
duce different sets of final ICs or the same user who runs the
ICA more than once may have different sets of final ICs. This
drawback is particularly severe when there are no sufficient ICs
to be used for signal source accommodation or when the data
space has been suppressed by data DR. Unfortunately, this issue
has never been investigated and explored in MRI analysis.

III. BAND-EXPANSION PROCESS

The BEP presented in this section is developed to resolve the
issue of insufficient MR images to be used for MRI analysis.
When MR images are considered as multispectral band images,
each of these MR band images represents information provided
by a different pulse sequence. If we use one MR band image
to accommodate one brain tissue substance, the number of sub-
stances to be accommodated should not exceed the number of
MR band images, which is generally 3. As a matter of fact,
in MRI analysis, there are always more than 3 brain tissue sub-
stances such as GM, WM, CSF, fat, blood, water, etc., plus noise.
The idea of BEP arises from the fact that a second-order random
process is generally specified by its first-order and second-order
statistics. If we view the original MR bands as random variables,
we can generate a set of second-order statistical band images by
capturing correlation among different random variables, which
are the original MR band images. These correlated band images
provide missing but useful second-order statistical information
about the original band images. The second-order statistics to
be used for BEP include autocorrelation, crosscorrelation, and
nonlinear correlation to create nonlinearly correlated images.
The concept of producing second-order correlated band images
coincides with that used in signal processing to generate covari-
ance functions for a random process. Despite that such band
expansion may not have real physical reasoning, it does provide
a significant advantage to cope with the issue of insufficient
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band images. The idea of implementing BEP can be described
as follows.

Band expansion process (BEP)

Step 1) Let {BI}ZL:1 be set of original band images

Step 2) Second-order correlated band images:

i) {B? }lel = set of autocorrelated band images
ii) {BLBi}r =121 = set of crosscorrelated
band images.

In case, a rescaling is needed, auto- or crosscorrelated band
images can be normalized by the variances of band images such
as (0%,) " {B}?} and (05, 05,) " {BiB,}.

Step 3) Nonlinear correlated band images:

) {VB }1L:1 = set of band images stretched out
by the square root

ii) {log(B;)} 1L:1 = set of band images stretched out
by the logarithmic function.

It is worth noting that all the band images generated by BEP
are produced nonlinearly and provide useful nonlinear spec-
tral information to help to improve performance. However, we
should point out that according to our extensive experience, us-
ing the crosscorrelated band images generated by step 2(ii) is
generally sufficient to implement BEP. Additionally, using au-
tocorrelated band images produced by step 2(i) may sometimes
cause nonsingularity problems in matrix computation because
they are self-correlated and usually very close to the original im-
ages. It is suggested that they should not be used alone and can
be only used in conjunction with crosscorrelated band images.
This practice is very similar to the fact that a covariance matrix
including variances and covariances provides more information
than a diagonal matrix, which only includes variances. Besides,
high-order statistics can be also used in BEP. But, according to
our experiments, second order of statistics is generally sufficient
as demonstrated in [3].

IV. PRIORITIZED INDEPENDENT COMPONENT ANALYSIS

In order to address the second issue resulting from the use of
random initial projection vectors, a new concept, called PICA
to prioritize ICA-generated ICs, is introduced in this section.
Three PICA-based algorithms developed in [4], eigenvector-
prioritized PICA (Eigen-PICA), high-order statistics-prioritized
PICA (HOS-PICA), and automatic target-generation process
(ATGP)-prioritized PICA (ATGP-PICA) are developed to im-
plement PICA. Assume that the data dimensionality is L, and
there are L ICs generated by the ICA, denoted by {IC; } le.

A. Eigenvector-Prioritized ICA

A simplest way to prioritize ICs is to use eigenvalues as a
priority measure. The idea of the Eigen-PICA comes from PCA
where its PCs are ordered by data variance. So, the Eigen-PICA
takes advantage of eigenvectors of the data matrix, and use these
vectors as an initial set of projection vectors for ICA.

1) Eigen-PICA algorithm:

1. Find a set of eigenvectors of the data matrix, {v; }]Lzl,

arranged in order of magnitude of their corresponding
eigenvalues.
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2. Use each of {v; }le generated in step 1 as an initial

projection vector, the FastICA produce {ICZ-}Z‘L:1 in ac-
cordance with priorities determined by the magnitude of
eigenvalues.

It should be noted that eigenvalues are derived from the sam-
ple data covariance matrix and represents second-order statis-
tics. As a result, on some occasions the Eigen-PICA may not be
as effective as other criteria described in the following.

B. High-Order Statistics-Based PICA

The HOS-PICA is to prioritize ICA-generated ICs whose
significance is measured by high-order statistics. Two types
of high-order statistics are of major interest, the third-order
statistics, referred to as skewness, and the fourth-order statistics,
referred to as kurtosis. The algorithm to implement the HOS-
PICA is summarized as follows.

1) HOS-PICA algorithm:

1. The FastICA is used to randomly generate a unit vector as

an initial projection vector to produce each of ICs.

2. Calculate the third and fourth orders of statistics for (;

J(IC;) = &} or J(IC;) = &} 3)

. , i3
where «} = F [¢}] = (1/MN) 0N (2)
E[¢!] = (1/MN) MY (z,fb)4 are sample means of
third and fourth orders of statistics in the IC;.

3. Prioritize the {IC; }Z.L:1 in accordance with the magnitude
of J(IC)).

and k! =

C. ATGP-Prioritized PCA

The ATGP developed in [3] was developed to find potential
target pixels in a hyperspectral imagery. It repeatedly makes use
of an orthogonal subspace projector defined in [8] and [9] by

Py=I—-H(H"H)'H",  forany marix H (4)

to find target pixels of interest from the data.

1) Automatic target generation process:

1) Initial condition: Select an initial target pixel vector of
interest denoted by #,, which is a target pixel vector with
the maximum length as the initial target #;, namely, #, =
arg{max, r! r}, i.e., the brightest pixel vector in the image
scene. Set k = 1 and Uy = [¢g].

2) At nth iteration, apply Ptﬁ via (4) with U = [ty] to all
image pixels r in the image and find the nth target ¢, gen-
erated at the nth stage that has the maximum orthogonal
projection as follows.

t, = arg {max” {(P[tlovn —11r>T (P[tloun l]r)” (5)

whereU,,_1 = [tit> . . . t,_1] is the target matrix generated
at the (n—1)st stage.

3) Stopping rule: If n<L—1, let U, =[U,_1t,] =
[t122 .. .1, ] be the nth target matrix, go to step 2. Oth-
erwise, continue.

4) At this stage, the ATGP is terminated and the target ma-
trix is Up—1, which contains L-1 target pixel vectors,
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t,to, ..., t; 1, asits column vectors and the initial target
pixel vector t, provide an initial set of projection vectors
for ICA.

Using the ATGP as an initialization algorithm, the ATGP-
PICA can be described as follows.

2) ATGP-PICA algorithm:

1. Use the ATGP to produce set of projection vectors {t; }]L.;Ol

arranged in their appearing orders.

2. Use the set of {¢; }f;& generated in step 1 as an initial set

of projection vectors for ICA to produce {IC; }{“:1.

It is worth noting that the previous three PICA-based algo-
rithms are derived from different perspectives and have their
own merits. In HOS-PICA, the process of IC prioritization is
performed after all the ICs are generated. Unlike HOS-PICA,
Eigen-PICA and ATGP-PICA do not need to generate all ICs
prior to IC prioritization. In other words, both Eigen-PICA and
ATGP-PICA do not wait for all ICs to be generated. Instead,
they prioritize ICs while generating the ICs. The priorities of
ICs are determined by the order of their used initial projection
vectors. As a result, once the set of initial projection vectors is
determined, the IC priority is also determined accordingly.

V. EXPERIMENTS

The experiments conducted in this section followed the same
manner performed in [2] to demonstrate contrast enhancement
of the GM and WM in MRI analysis. Two sets of MR images
were used to substantiate the utility of our proposed PICA-
BEP in multispectral processing of MR images as well as to
demonstrate advantages of PICA-BEP over the traditional ICA
used in [2]. One set of images is the data base of MR brain
synthetic images available on web site [10] and the other is real
MR brain images acquired by using a whole body 1.5 T MR
system in the Taichung Veterans General Hospital.

A. Synthetic Brian Image Experiments

The synthetic images to be used for experiments in this
section were the axial T1, T2, and proton density MR brain
images [with 5-mm section thickness, 0% noise, and 0% in-
tensity nonuniformity (INU)] resulting from the MR imaging
simulator of McGill University, Montreal, PQ, Canada (avail-
able at www.bic.mni.mcgill.ca/brainweb/). The image volume
provided separate volumes of tissue classes such as CSF, GM,
WM, bone, fat, and background. The use of these web MR brain
images is to allow researchers to reproduce our experiments for
verification.

Fig. 1(a) shows three MR brain images with specifica-
tions provided in [10] where the first image is acquired by
modality = PD, protocol = International Consortium of Brain
Mapping (ICBM), phantom name = normal, slice thickness =
5 mm, noise = 0%, INU = 0%, the second image by modality
= T1, protocol = ICBM, phantom name = normal, slice thick-
ness = 5 mm, noise = 0%, INU = 0%, and the third image by
modality = T2, protocol = ICBM, phantom name = normal,
slice thickness = 5 mm, noise = 0%, INU = 0%. Fig. 1(b) pro-
vides the ground truth also available on web site [10] for brain
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Backiround

Muscle/Skin

Glial Matter

Connective

Fig. 1. (a) Three MR synthetic images. (b) Ground truth. (c) Crosscorrelation
BEP generated images.

tissue substances in the images in Fig. 1(a), which will be used
to verify the results obtained for our experiments.

Fig. 2 shows inability of ICA in separation of the GM, WM,
CSF due to insufficient number of MR images where the three
ICs could not effectively separate the WM, GM, and CSF. This
is because other brain substances had nowhere to go, and were
forced to be mixed with the WM, GM, and CSF in only the
three ICs. Fig. 2(a)—(c) further demonstrates inconsistent re-
sults of ICs resulting from three different sets of random initial
projection vectors. In order to address the issue of insufficient
MR images, three crosscorrelated images shown in Fig. 1(c)
were generated by BEP, and were combined with the original
three MR brain images in Fig. 1 to produce six MR images.

Fig. 3 shows the results of six FastICA-generated ICs where
the WM, GM, and CSF were successfully separated in individual
and separate ICs.

IEEE TRANSACTIONS ON BIOMEDICAL ENGINEERING, VOL. 55, NO. 6, JUNE 2008

Fig.2. ThreeICs produced by the FastICA using three different sets of random
initial projection vectors.

Unfortunately, like Fig. 2, Fig. 3(a)—(c) also shows incon-
sistent results produced by three different sets of random ini-
tial conditions where other brain tissue substances were also
separated and identified underneath each of ICs according to
the ground truth provided by Fig. 1(b). To resolve this is-
sue, the three PICA-BEP algorithms proposed in Section IV
were implemented to prioritize ICs where Fig. 4(a)—(c) shows
six FastICA-generated ICs produced by Eigen-PICA-BEP,
HOS-PICS-BEP, and ATGP-PICA-BEP, respectively where all
the algorithms but the HOS-PICA-BEP using the fourth or-
der successfully separated WM, GM, and CSF in different
priorities.

An interesting and rather important observation from Figs. 3
and 4 is noteworthy. The two major brain tissue substances, WM
and GM, were separated in the last two ICs in more than half
of cases regardless of what initial projection vectors were used.
Additionally, among these three substances, the CSF was always
separated first. These experiments provided strong evidence that
three ICs in Fig. 2 were not sufficient to effectively separate the
WM, GM, and CSF. Similar conclusions can be also drawn
from experiments for web images with various levels of noise in
[10]. Therefore, no results are included here to avoid redundant
descriptions.

The experiments conducted earlier demonstrated that the
PICA-BEP could significantly improve ability of ICA in MRI
analysis. Two comments are worth being mentioned as follows.

1) While performing blind source separation by ICA, it

should be noted that it can be only effective when the
number of ICs is greater than the number of sources to
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IC1 (Fat)

Fig. 3.

be separated. This was demonstrated in Figs. 2 and 3,
where the three major brain tissues, WM, GM, and CSF
were mixed in all the three ICs. The introduction of the
BEP is developed to mitigate this problem.

Due to the use of random initial projection vectors, the ICs
are generally generated in random orders. As a result, a
user who runs ICA in different times or different users who
run the IC at the same time produce different results. Such
inconsistency makes the ICA unstable and unrepeatable.
The PICA-BEP remedies this dilemma by prioritizing all
ICs consistently, as demonstrated in Fig. 4.

2)

B. Quantitative Analysis

One great advantage of using the web images in [10] is to al-
low us to conduct quantitative analysis. According to Fig. 1(b),
there are also other brain tissue substances such as skin, fat, glial
matter, and background that also constitute different classes.
However, from a clinical point of view, only the GM, WM, and
CSF are of major interest. Therefore, the MRI quantitative anal-
ysis performed in this section was conducted based on contrast
enhancement of these three brain tissues in the same way as was
done in [2]. In this case, all tissues other than the GM, WM, and
CSF were considered as a single class labeled by the background
(BKG). However, it should be noted that only the GM and WM
were considered, and the CSF was not included for analysis

©
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IC5 (GM)

IC4 (Muscle/Skin) 1C6 (WM)

Six FastICA generated ICs with BEP expanded images using three different sets of random initial projection vectors.

in [2]. The difficulty of analyzing the CSF in [2] may have re-
sulted from the inability of UC-ICA in dealing with insufficient
MR band images. Since ICA is unsupervised, two commonly
used unsupervised methods, C-means [11] and fuzzy C-means
(FCM) [12], were also used for comparative analysis where the
number of classes was set to 4 representing four classes of GM,
WM, CSF, and BKG. Finally, because the FastICA-generated
ICs are real values, it requires a hard decision maker to thresh-
old each ICs for quantification. In this case, the support vector
machine (SVM) [13], [14] was used for this purpose, where nine
training samples were selected for each of the four classes, WM,
GM, CSF, and BKG. The selection of SVM over other thresh-
olding techniques was because SVM has been shown to be very
effective in multiple class classification. It should also be noted
that the SVM is a class-labeling process, which converts real
values produced by the ICA to hard decisions that assign each
data sample to its specific class. As a result, there is no need of
thresholding ICs for quantification.

In order to perform quantitative analysis, a quantification
measure, called Tanimoto index (TI) defined for multispectral
MR images in [11] and [15] as

_ |AnB]
- |AU B]

(6

can be used for this purpose where A and B are two data sets
and | X| is the size of a set X. According to (6), TI = 0 implies
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IC1 (Fat) IC2 (Muscle/Skin)

IC3 (Fat)

IC2 (Fat)

IC1 (Fat) IC2 (CSF) IC3 (Muscle/Skin)

Fig. 4.

that both the data sets A and B are completely different, and
TI = 1 indicates that both the data sets A and B are the same
set. Table I(a) and (b) tabulates quantification results of GM,
WM, and CSF using MR images with/out BEP, respectively,
where TI was the criterion specified by (6) and three methods,
PICA with kurtosis, C-means, and FCM were implemented in
conjunction with SVM. The “rf” in Table I(a) and (b) indicates
the INU defined in [10]. It should be noted that the C-means
used random initial conditions. Therefore, its final results were
inconsistent due to the same drawback suffered from ICA. In this
case, the results of the C-means were obtained by averaging the
results of running the C-means ten separate times. Also, since
the results obtained by the three PICA algorithms, Eigen-PICA,
HOS-PICA, and ATGP-PICA, were similar, only the results
using PICA with kurtosis were included in Table I(a) and (b) to
avoid redundant tables.

3 order statistics

IC3 (Muscle/Skin)
4™ order statistics

IEEE TRANSACTIONS ON BIOMEDICAL ENGINEERING, VOL. 55, NO. 6, JUNE 2008

C4 (CSF)

IC4 (CSF)

IC5 (GM)

1C4 (Skull/Skin)

1C6 (WM)

Results from three PICA-BEP approaches, Eigen-PICA-BEP, HOS-PICA-BEP, ATGP-PICA-BEP.

From Table I(a) and (b), several interesting observations can

be made.

1. Generally speaking, the FCM method always performed
better than the C-means method.

2. Interestingly, the results obtained by both the C-means
and FCM methods fusing MR images with/out BEP were
close. It implied that BEP did not have much impact on
these two methods. In other words, we cannot conclude
that one with BEP performed better than another without
BEP. This makes sense since both methods are spatial
correlation-based methods and have very little to do with
linear transformation.

3. Also shown in the table, it seemed that the C-means was
the worst and the FCM method was between PICA + SVM
with and without BEP. More specifically, the FCM method
performed better in separation of CSF and GM, but worse
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TABLE I
(a) QUANTIFICATION RESULTS OF GM, WM, AND CSF WITHOUT BEP. (b) QUANTIFICATION RESULTS OF GM, WM, AND CSF WITH BEP
TI PICA+SVM C-means Fuzzy C-means
CSF GM WM CSF GM WM CSF GM WM

Noise0_rf0 0.4501 0.6435 0.7711 0.4506 0.3063 0.4045 0.4379 0.6320 0.6117

Noisel_rf0 0.4211 0.6243 0.7670 0.4347 0.3215 0.4173 0.4357 0.6300 0.6138

Noise3_rf0 0.4092 0.5960 0.7224 0.4367 0.3226 0.4143 0.4327 0.6142 0.6008

NoiseS_rf0 0.4226 0.5763 0.6570 0.4279 0.2885 0.3456 0.4328 0.5942 0.5804

Noisel rf20 0.4335 0.5981 0.7401 0.4412 0.4007 0.3253 0.4322 0.6282 0.6105

Noise3_rf20 0.3997 0.5259 0.6522 0.4275 0.3488 0.3128 0.4359 0.6157 0.6016

Noise5_rf20 0.4012 0.5862 0.6777 0.4240 0.3374 0.3058 0.4278 0.5969 0.5794

(@)
TI PICA+SVM C-means Fuzzy C-means

CSF GM WM CSF GM WM CSF GM WM
Noise0_rf0 0.2482 0.6254 0.8053 0.4552 0.3343 0.4656 0.4383 0.6482 0.6074
Noisel_rf0 0.3467 0.7074 0.7780 0.4494 0.4505 0.3997 0.4364 0.6388 0.6086
Noise3_rf0 0.2546 0.6652 0.7340 0.4315 0.4013 0.4326 0.4343 0.6236 0.5925
Noise5_rf0 0.3545 0.5815 0.6187 0.4227 0.2610 0.3830 0.4335 0.5956 0.5691
Noisel_rf20 0.3104 0.6985 0.7409 0.4942 0.3586 0.3181 0.4329 0.6405 0.6028
Noise3_rf20 0.3573 0.6418 0.6738 0.4655 0.2823 0.2986 0.4370 0.6277 0.5895
NoiseS_rf20 0.2860 0.6280 0.6399 0.4211 0.1721 0.3066 0.4281 0.5981 0.5655

(b)

in separation of WM than PICA + SVM without BEP. On
the other hand, PICA + SVM with BEP performed better
the FCM method in separation of GM and WM, but worse
in separation of CSF than the FCM method.

4. According to [10], the Noise_rfO simulated in web MR
images does not imply that the images are “noise-free.” It
simply means that two types of noise are simulated, one
with 1f20 indicates INU labeled by 20 compared to one
with intensity uniformity denoted by rf0. So, the perfor-
mance for the case of Noise_rfO was not necessarily the
best among all noise cases.

5. The performance of all the three methods, PICA + SVM,
C-means, and FCM with/without BEP was always de-
graded by noise level except the case of Noise5_rfO for
separation of CSF. Also, in most of cases, these three meth-
ods with/without BEP generally performed worse for MR
images with Noise_rf20 than MR images with Noise_rf0.

6. PICA-BEP + SVM was more sensitive to Noise_rf20 (i.e.,
INU) than PICA 4+ SVM without BEP and the other two
methods with/without BEP.

7. It should be noted that Table I(a) and (b) provides quantifi-
cation results for the classifiers SVM, C-means, and FCM.
The effectiveness of a classifier is determined by a thresh-
old value ¢, which can be selected according to different
applications. For example, if the ¢ is set to 0.5, according ~ Fig- 5.
to Table I(b), both the GM and WM were successfully
detected by PICA + SVM and FCM. However, if the ¢ is
set to 0.6, PICA + SVM missed only one case that was
GM for Noise 5-rf0 as compared to FCM that missed six

Real MR brain images and their band images generated by the BEP.

cases (two cases for GM and four cases for WM). In this
case, PICA + SVM apparently outperformed FCM.
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ICI (Fat) IC2 (CSF) IC3 (CSF)

IC1 (Fat)

IC2 (CSF)

IC3 (CSF)

Fig. 6.

C. Real MR Brian Image Experiments

In this section, we further demonstrate the utility of the PICA-
BEP in real MR image experiments. The real MR brain images
were acquired from one normal volunteer by a whole body 1.5-T
MR system (Sonata, Siemens, Erlangen, Germany). The routine
brain MR protocol consisted of axial spin echo T1 weighted im-
ages (TR/TE = 400/9 ms), proton density image (TR/TE =
4000/10 ms), and T2 weighted images (TR/TE = 4000/91 ms).
Other imaging parameters included for this study were slice
thickness = 6 mm, matrix = 256 x 256, field of view (FOV)
= 24 cm, number of excitations (NEX) = 2. Since many mis-
cellaneous brain tissue substances in MR brain images cannot
be specified a priori and also may not have clinical values, only
GM, WM, and CSF are of great interest in medical diagno-
sis. For consistency, the experiments were conducted based on
separation of these three brain tissues in the same way as was
conducted in [2] and in Section V-B. Fig. 5(a) shows the three
MR brain images obtained by T1 weighted, T2 weighted, and
proton density images. To reduce head movement, sponge pads
were placed on both sides of a patient’s head in the head coil
during examination. Fig. 5(b) shows three band images gener-
ated by BEP using step 2(ii) via crosscorrelation, which were
combined with the three original images in Fig. 5(a) to make up
a six-band image cube for the ICA to produce six ICs.

Fig. 6 shows three scenarios of six ICs produced by the
FastICA using three different sets of random initial projection
vectors.

Since the performance using the FastICA on the three original
MR images in Fig. 5(a) was very poor, their experiments are not
included. As we can see from Fig. 6, the six ICs generated from
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(@)

(b)

©

IC5 (GM/WM)

1C5 (GM/WM)

IC4 (WM)

IC5 (GM)

1C6 (GM/WM)

Six FastICA generated ICs with the BEP expanded images using three different sets of random initial projection vectors.

three scenarios appeared in different orders. Also observed from
the results in Fig. 6, the WM and GM were always classified
in the last two ICs, while the CSF was always classified early
and split in two separate ICs. It is also interesting to note that
according to our experiments, real images in Fig. 5(a) present
more challenging issues for clinical diagnosis as compared to
synthetic images in Fig. 1(a).

According to Fig. 7(a)—(c) produced by three PICA-BEP
algorithms, Eigen-PICA-BEP, HOS-PICA-BEP, and ATGP-
PICA-BEP, respectively, the one produced by the Eigen-PICA-
BEP was not as good as that by other PICA-BEP algorithms
because it could not separate the GM. This is because eigen-
values represent second-order statistics, and they are not good
indicators of the presence of target substances characterized by
high-order statistics.

Comparing Figs. 7-4, two differences can be observed. One is
that all the CSF, WM, and GM in Fig. 7(a)—(c) were prioritized
in this order. However, this is not true for Fig. 4 for simulated
images, where the CSF might not be the first one prioritized, but,
at least, the second prioritized substance. A second difference is
that the CSF and GM and WM in real images may be classified
into more than one IC instead of a single IC as demonstrated
in simulated images. This is mainly due to the fact that there
are many unknown substances in real images, which cannot be
identified and could be accommodated in various ICs. However,
such unknown and unidentified substances could be avoided
in simulated images. As a consequence, the classification of
the CSF, GM, and WM is more difficult for real images than
simulated images, and is generally not as good as the results
obtained for simulated images, a fact that makes sense.
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IC1 (Fat)

IC2 (CSF) IC3 (GM/WM)

IC1 (Fat) IC3 (CSF)

IC1 (Fat) IC2 (CSF)

IC3 (CSF)
4™ order statistics

(b)

IC1 (Fat)

IC2 (CSF) IC3 (CSF)

©

Fig. 7.

VI. DISCUSSIONS

As demonstrated by PICA-BEP in experiments, no matter
which criterion was used, the priorities of the GM and WM
were never higher than three ICs. As a result, if only three
MR images were used to accommodate all brain tissue
substances, GM and WM would not have high priorities to
be accommodated in these three ICs. As a result, they would
be very much likely to be scrambled with other substances in
the only three available ICs. In this case, the BEP becomes an
effective means of mitigating this problem, as demonstrated by
results in Figs. 3 and 4 and Figs. 6 and 7, where BEP created
three additional new ICs to successfully accommodate the GM
and WM. Seven observations from the experiments conducted
in Sections V-A—V-C are noteworthy.

1) In all experiments conducted in this paper, only the three

band images generated by BEP via crosscorrelation in step
2(ii) were used in conjunction with the three original MR
brain images for experiments. According to our extensive
experiments, it seems that these three crosscorrelation-
generated band images already provide sufficient informa-
tion to effectively separate the three major brain tissues,
GM, WM, and CSF in different ICs.

3" order statistics
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IC4 (CSF) IC5 (WM) IC6 (BKG /CSF)

IC4 (WM) IC5 (GM/CSF)

IC4 (WM)

IC5 (BKG) IC6 (GM)

IC4 (WM) IC5 (GM/WM)

1C6 (GM)

Results from three PICA-BEP approaches, Eigen-PICA-BEP, HOS-PICA-BEP, ATGP-PICA-BEP.

2) Experiments were also conducted by incorporating only
the three band images that were generated by BEP using
step 2(i) via autocorrelation with the original images. It
turned out that the results using autocorrelation-generated
band images were not as good compared to those us-
ing crosscorrelation-generated band images. The reason
is very obvious that self-correlated information is not as
useful as crosscorrelated information obtained by corre-
lating two different band images.

3) Experiments combining three autocorrelated and three
crosscorrelated expanded images generated by BEP us-
ing both steps 2(i) and 2(ii) were also performed in com-
parison with the results presented in this section. The re-
sults also show no visible improvement, and thus, they are
not included here. This is due to limitation of effective-
ness of using BEP to generate new images from the three
original images. When only three MR images are used,
BEP reaches at a point that three additional images are
sufficiently enough and there is not much gain that can
be benefited by including more nonlinear self-correlated
images. However, it has been shown in [3] that if there
are four original multispectral images, BEP may need to
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generate more additional images to extend and improve its
performance. This suggests that the number of additional
images for BEP to generate is determined by the number
of the original multispectral images. For three MR images,
three BEP-generated images may suffice as demonstrated
in the experiments in Section V.

4) BEP is a powerful technique, which can self-clone images
from a set of original multispectral images. However, it
should be noted that the BEP cannot be over done. A
danger of this practice may result in over-separation in
the sense that a substance is forced to be split and sep-
arated in more ICs. Therefore, as a guide of using BEP
for three-band MRI analysis, it is recommended that using
crosscorrelated band images for BEP may be good enough
to accommodate our needs.

5) It is worth noting that ICA is designed for signal source
separation, but not for classification. Therefore, the im-
age experiments conducted in Sections V-A and V-C were
evaluated by visual inspection of GM, WM, and CSF sep-
arated in different and individual ICs not by classifica-
tion. However, in order to perform quantitative analysis in
Section V-B, the ICs must be thresholded for quantifica-
tion. This is because the values in all ICs are real valued.
In doing so, SVM was chosen to quantify the results due
to its ability in classification.

6) As noted earlier, the values in ICA-generated ICs are real
values to reflect the detected abundance fractions of brain
tissue substances by blind separation. Therefore, the abun-
dance fractions of the same brain tissue substances can
be spread over more than one IC, as shown in Figs. 3
and 4 and Figs. 6 and 7. This phenomenon is particularly
evidential for CSF. As a result, PICA performed poorer
than C-means and FCM methods in separation of CSF.
Such situation became even worse when BEP was used
to expand MR images, in which case, PICA-BEP split
CSF in more ICs via BEP. Consequently, PICA-BEP per-
formed worse than PICA without BEP, as demonstrated in
Table I(a) and (b). This may explain why Nakai et al. did
not discuss the CSF in [2] due to its poor performance.
However, at the expense of its poor performance in CSF
separation, PICA-BEP significantly improved its ability
in separation of GM and WM, as shown in Table I(a) and
(b), Figs. 3 and 4 and Figs. 6 and 7.

7) Since ICA separates brain tissue substances by detecting
their abundance fractions, ICA is not a classification, but
rather a separation method. In order to make ICA a clas-
sification technique, the ICA needs to be implemented in
conjunction with a classifier as a postprocessing step to
produce a classification map.

VII. CONCLUSION

ICA is a versatile technique and has been found in many ap-
plications. However, it cannot be blindly applied without extra
care. This paper demonstrates that the commonly used UC-
ICA based on under representation of a mixing model cannot
be directly applied to MRI analysis, which actually deals with
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OC-ICA. This paper presents a new application of OC-ICA in
MRI analysis, which has not been explored in the past. In partic-
ular, it addresses two key issues arising in UC-ICA, insufficient
MR images and inconsistent results caused by the use of random
initial projection vectors used in ICA by introducing two new
concepts, the BEP to resolve the first issue and PICA to mitigate
the second issue. A combination of the BEP and PICA results in
anew OC-ICA approach, called PICA-BEP that can be used for
MRI analysis in the sense that brain tissue substances of interest
can be separated in individual ICs for contrast enhancement.
The experimental results show that PICA-ICA improves the tra-
ditional UC-ICA and spatial domain-based analysis techniques
such as C-means.
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